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In [1]’s Maze task, at each word w of a stimulus, participants must decide between two

proposed continuations shown side-by-side: a target (w) and a foil (a somehow-less-likely

continuation). Maze decision latencies (“Maze RTs”) on w closely track other reading time

measures [1–4], without spill-over effects from previous words [4]. As a result of this

precision, the Maze has become popular for crowd-sourced sentence-processing studies.

The RT on an accurate Maze trial could be modeled as the result of a consistent set of

variable-latency processes: see Figure 1. However, this model has not yet been validated in

full, and researchers have generally taken differences in Maze RTs across conditions to

reflect differences in processing of the target (A–B). In this work, we demonstrate for the first

time the additional contribution of foil processing (C–D) and decision-making (E).

Data comes from 2 previous experiments (Table 1) which used [3]’s A-Maze method to

generate foils from high-surprisal continuations from [5]’s language model. We also

calculated GPT-2 [7] surprisal (in bits) for every target and foil in context. Following e.g. [6]

we assume that target processing durations (A–B) should be linearly related to target

surprisal; we assume likewise that foil processing durations (C–D) should correlate with foil

surprisal, and decision durations (E) should correlate with target–foil surprisal differences [9].

Procedure To isolate our effects of interest from known effects like target surprisal [3, 8], we

first fit models with such effects (1a) over RTs on odd trials, then used these to calculate

residual RTs on even trials. We then examined these residual RTs (1b), taking any remaining

effects of foil surprisal or surprisal differences to reflect the influence of processes C–E.

However, if participants find the first word they attend to be suitable enough, they may

choose it without examining the other, as in other forced choices [10]. Foil properties would

then have less influence when the target is attended first. We thus also examine how foil

surprisal interacts with trial diplay properties that may affect initial attention, like L–R ordering.

Results Residualizing models (Table 2) yielded credible effects of target surprisal, position

within the stimulus, and trial number. Models over residuals provide evidence for interactions

between foil surprisal effects and display properties (Table 3). Marginal estimates show that

foil effects are additively larger when foils appear on the left, or opposite of the previous

target (Table 4). (Participants, it seems, like to start at the left, or opposite their last choice.)

Figure 1 is thus only partially correct: Maze RTs do seem to come often from a chain of

processes that includes foil processing and target–foil comparison, but they may also come

from absolute judgments without comparison. We plan to validate these claims further with

eye-tracking. For now, these results highlight the complex linguistic and decision processes

that underlie Maze observations, and suggest that Maze experimenters should be careful to

control for presentation order, foil surprisal, and surprisal differentials within critical regions.



Fig. 1: Hypothetical processes required for a Maze decision between target w and foil w’ in context c.

Table 1: Properties of the experimental data investigated here, taken from [11], Chapters 3 and 4.

Expt. Participants Distinct Items Med. Stimulus Length (Range) Total Correct RT Obs.

A 91 440 24 words (17–49) 180,309

B 143 336 21 words (5–26) 226,561

(1) Regression models fit in brms [12]

NB: All models used weakly-constrained priors, centered linear predictors, and dummy-coded binary
predictors. We fit linear relationships to untransformed Maze decision times following [4].

a. RT ~ Position * Trial + TargetSurp +
(1 + Position * Trial + TargetSurp | Subject) + (1 | Item)

b. Residual RT ~ (FoilSurp + SurpDiff) * TargetPosition * SideRepetition +
(0 + (FoilSurp + SurpDiff) * TargetPosition * SideRepetition | Subject)

Expt Parameter β
^

95% CrI Expt Parameter β
^

95% CrI
A Intercept 790.89 (765.31, 816.17) A FoilSurp:TargetPos 1.71 (0.74, 2.71)

TargetSurp 10.08 (9.42, 10.75) FoilSurp:SideRep 1.87 (0.73, 3.01)
Position 2.27 (1.79, 2.76) SurpDiff:TargetPos -0.37 (-1.49, 0.73)
Trial -1.22 (-1.53, -0.92) SurpDiff:SideRep -1.25 (-2.34, -0.16)
Pos:Trial 0.02 (0.01, 0.04)

B Intercept 826.24 (799.04, 853.21) B FoilSurp:TargetPos 2.44 (1.36, 3.52)
TargetSurp 13.01 (12.12, 13.89) FoilSurp:SideRep 2.83 (1.66, 4.01)
Position 4.86 (4.09, 5.62) SurpDiff:TargetPos -1.35 (-2.51, -0.18)
Trial -1.06 (-1.25, -0.87) SurpDiff:SideRep -2.56 (-3.89, -1.19)
Pos:Trial 0.02 (0.01, 0.03)

Table 2: Parameters in residualizing regressions. Table 3: Notable interactions in critical regressions.

Display
Sequence

FoilSurp SurpDiff

β
^

95% CrI β
^

95% CrI
A T F → T Fxxx 0.32 (-0.52, 1.16) 2.50 (1.26, 3.75)

T F → F Txxx 0.17 (-0.66, 1.00) 2.35 (1.24, 3.47)

F T → F Txxx 1.49 (0.35, 2.66) 3.67 (2.10, 5.27)

F T → T Fxxx -1.55 (-2.25, -0.86) 0.64 (-0.02, 1.29)

B T F → T Fxxx 0.76 (-0.05, 1.59) 3.77 (2.22, 5.32)

T F → F Txxx 0.37 (-0.41, 1.17) 3.38 (1.93, 4.83)

F T → F Txxx 1.96 (0.98, 2.94) 4.97 (3.23, 6.65)

F T → T Fxxx -2.07 (-2.87, -1.26) 0.94 (0.07, 1.80)

Table 4: Marginal effects of foil surprisal parameters by
target position sequence. (T F → F T means RTs from trials
with a target on the right which were preceded by trials with a
target on left.)

Fig. 2 (R): Distributions and joint distributions
of parameters of interest in Expt. A.
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