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When playing as a comprehender in pragmatic reference games (RefGames),
participants must determine the intended referent of a message using recursive
Gricean reasoning about cooperative behavior (Frank & Goodman, 2012). Franke &
Degen (2016) observe individual differences in RefGame performance: while some
comprehenders do give responses consistent with second-order pragmatic
reasoning (reasoning about a simulated cooperative speaker), others seem only to
perform first-order reasoning (reasoning about a simulated literal speaker), or even
avoid pragmatic interpretation altogether. Seeking to explain this variation, Mayn &
Demberg (2023) correlated participants’ performance on RefGame with a battery of
individual difference tasks, and found a correlation with problem-solving tasks like
Raven’s Advanced Progressive Matrices (RAPM): participants who succeed in
RAPM are more likely to give responses consistent with higher-order pragmatic
strategies.
We suggest that this correlation arises because performance in RAPM and
RefGame is dependent on shared domain-general resources: specifically, resources
for reinforcement learning. Researchers have suggested that RAPM requires
comprehenders to explore a wide space of possible rules and strategies (Carpenter
et al. 1990; Vigneau et al. 2006; Gonthier & Roulin 2020). Stocco et al. (2021) use a
cognitive model in the ACT-R framework to demonstrate that, in order to optimally
explore this hypothesis space on each trial, a participant must deploy sufficient
negative feedback strength (Fneg) (Frank et al. 2004) to quickly penalize
unsuccessful strategies, so that they might identify a successful strategy before
reaching the limits of their own personal persistence (Dale et al. 2018). The novel
predictions of this model were borne out: a measure of Fneg based on the
Probabilistic Stimulus Selection task (PSS, Frank et al. 2004) did predict higher
RAPM performance.

An ACT-R model of RefGame
Inspired by the approach in Stocco et al. (2021), we present a model of RefGame
using the ACT-R implementation pyactr (Brasoveanu & Dotačil, 2020) to
demonstrate how performance may depend on these same reinforcement learning
resources. The model selects referents by sampling with replacement from a space
of three interpretation strategies, corresponding to interpretation which is (A) merely
literal, (B) first-order pragmatic, or (C) second-order pragmatic. The model’s
simulated participants attempt these strategies on each trial, administering internal
Fneg when a strategy fails to determine a unique optimal referent. They respond once
a successful strategy has been found, or else they guess once persistence has been
exhausted. Simulated participants thus only learn to apply second-order
interpretation if self-administered feedback can accumulate over time enough to
overcome a typical bias in favor of simpler response strategies.



As a preliminary validation, we assessed our model using the data from Mayn &
Demberg (2023). Using PyMC (Abril-Pla et al. 2023, see Brasoveanu & Dotlacil,
2020), we fit Fneg parameters for the ACT-R models based on participants’
performance, separately for RAPM and RefGame. These fitted Fneg values are
positively correlated across the tasks (R2 = 0.10, p < 0.001). If we model participants
as using related Fneg across the tasks, we can indeed predict RefGame accuracy
based on RAPM performance with some accuracy (R2 = 0.05, p= 0.02).

Predictions of the ACT-R model
The model makes several other key predictions. (A) Because participants learn to
engage pragmatic response strategies through experience with the task, selection of
the intended targets should improve as the experiment progresses. (B) Because
pragmatic response strategies involve extra reasoning about alternative messages,
and alternative referents for alternative messages, they should take longer; thus,
responses in critical trials which require pragmatic strategies will have longer RTs,
and slower responses in critical trials will be more likely to be correct. (C) Individuals
with higher Fneg and higher persistence will be more likely to deploy pragmatic
response strategies, and thus will be more likely to respond accurately in critical
trials (see Figure 1).

Experiment
We tested these predictions in a pre-registered1 study on Prolific (n = 150). RefGame
responses and response times were collected on 8 SIMPLE trials which only required
first-order reasoning, and 8 COMPLEX trials which required second-order reasoning,
following Franke & Degen (2016), along with 20 filler trials with unambiguous
messages. Participants also completed individual differences tasks, including RAPM,
the PSS measure of Fneg, and a 5-letter anagram task. Following Ventura & Shute
(2013), we used this anagram task to assess persistence, calculated as a ratio of
how long it took participants to decide to skip anagrams with no solution compared to
their correct responses to easily solvable anagrams.
All effects discussed below were estimated in Bayesian mixed-effects models with
regularizing priors in brms (Bürkner, 2017). As a quick estimate of the strength of the
evidence for critical effects, we report the posterior probability P that > 0 or < 0β β
given the data.

Results
Results largely confirmed the predictions of the model. Re: (A), accuracy in critical
items improved over trial order, for both SIMPLE (P > 0.99) and COMPLEX (P = 0.95),
suggesting that success depends on learning optimal strategies over the course of
the experiment. Re: (B), correct responses in both critical conditions were slower
than on unambiguous fillers (Ps > 0.99); COMPLEX trials only trended as slower than
SIMPLE (P = 0.81). We also observe that slower responses were more likely to be
correct, most clearly in COMPLEX (P = 0.95). Finally, re: (C) we observe evidence that
both higher Fneg and persistence, which showed no correlation with each other in our
sample, were indeed associated with higher accuracy in SIMPLE (P = 0.92, P > 0.99)
and COMPLEX (Ps = 0.86, 0.91) (see Figure 2). These did not account for the entirety
of the (replicated) correlation between Raven’s and RefGame, suggesting that there
could be other relevant shared resources.

1 https://osf.io/56gnf/?view_only=4b00464e8e4e4dc6b65d09243d219977

https://osf.io/56gnf/?view_only=4b00464e8e4e4dc6b65d09243d219977


Discussion
Our results suggest that RefGame performance, and possibly pragmatic
comprehension behavior more broadly, requires domain-general cognitive resources
that help humans decide between multiple ways of solving a task. Individual
differences in these resources may help explain some of the observed variation in
pragmatic behavior in such tasks. We suggest that further development of cognitive
models for pragmatic tasks is a fruitful way to make real-time accounts of pragmatic
processing that are explicit and cognitively realistic.
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Figure 1: ACT-R model predictions for the relationship between RefGame accuracy
and parameters corresponding to Fnegand persistence. Error bars correspond to
bootstrapped 95% CIs.
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Figure 2: Observed relationships between RefGame accuracy and our measures of
Fneg and persistence. Error bars correspond to bootstrapped 95% CIs.
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