Modeling individual differences in a pragmatic reference game

as a consequence of variable disengagement from unsuccessful strategies

John Duff Alexandra Mayn Vera Demberg

Saarland University, Dept. of Language Science & Technology

MathPsych/ICCM Symposium on Computational Psycholinguistics 21 July 2024

jduff@lst.uni-saarland.de

Gricean pragmatics

(Grice 1975, Franke 2011, Frank & Goodman 2012)

Two empirical complications

Pragmatic reasoning in games only emerges over time

(Sikos et al. 2021)

Individuals vary in their depth of pragmatic reasoning

(Franke & Degen 2016, Mayn & Demberg 2023)

Modeling performance via reinforcement learning

Comprehenders find an optimal strategy through exploration and failure

(cf. Stocco et al. 2021)

Roadmap

1. Background

2. Our ACT-R model

3. Modeling individual differences across tasks

Pragmatic reference game (RefGame)

(Frank & Goodman 2012 and following; cf. Wittgenstein 1953)

("Trivial" Trial)

Three interpretive strategies (Franke & Degen 2016)

Strategy:

Literal interpretation First-order pragmatic interpretation

Second-order pragmatic interpretation

"Simple" Trials

(available messages)

"Complex" Trials

Expected success by strategy

Picks:

Trivial:

Simple:

Complex:

more-informative messages

Observation #1: No second-order reasoning in one-shot experiments

Sikos et al. (2021)

Observation #2: Individual differences in many-shot performance

Franke & Degen (2016) (n = 60, 12 obs/condition)

Mayn & Demberg (2023)

(n = 173, 12 obs/condition)

(debiased stimuli, cf. Mayn 2023)

Unexpected covariate: Reasoning performance

:= Raven's Matrices + Cognitive Reflection Task

(Mayn & Demberg 2023)

(also Theory of Mind, but not Working Memory)

Raven's Matrices

Success requires efficient pattern induction in a large hypothesis space.

(Carpenter et al. 1990, Gonthier & Thomassin 2015, Gonthier & Roulin 2020, Stocco et al. 2021)

Modeling individual differences in Raven's

Stocco et al. (2021):

ACT-R model for Raven's performance as rule induction via exploration and reinforcement learning

individually parameterized by:

persistence

(Eisenberger & Leonard 1980)

neg. feedback strength (F_{NEG})

(Frank et al. 2004)

Roadmap

1. Background

2. Our ACT-R model

3. Modeling individual differences across tasks

RefGame as exploration

(implemented in pyactr: Brasoveanu & Dotlačil 2020)

- Attempt literal interpretation
 - Check informativity (number of matches)
 - If informative (1 match), select match
 - Else, penalize utility with F_{NEG}, return to...
- Select highest-utility strategy (with noise)
 - If already checked, penalize utility with F_{NEG}
 - Else, evaluate; select or return again
- If time ever exceeds persistence (τ), guess

Model experiment

- Simulated task: Randomized 36-trial RefGame (16 trivial, 8 simple, 8 complex)
- Simulated participants: 10 persistence values x 20 F_{NEG} values, 25 per cell
- Critical strategy utilities begin as a fixed stair-step

Literal: 5 First-Order: -2.5 Second-Order: -5

Learning-related individual differences

Predicted learning behavior

 $\beta_{\text{TRIAL}} = (0.05, 0.05)_{95\%}$

(from brms logistic regr. with uninf. priors, trial was centered and not scaled)

Roadmap

1. Background

2. Our ACT-R model

3. Modeling individual differences across tasks

Jointly modeling Raven's and RefGame

Comparing best-fit parameters across tasks

Predicting RefGame from Raven's scores

Predicting RefGame from Raven's scores

observed

Predicting RefGame from Raven's scores

- observed
- critical (Raven's-fit parameters)

Deriving an upper baseline

Comparing with an upper baseline

- observed
- critical (Raven's-fit parameters)
- upper baseline (RefGame-fit parameters)

Deriving a lower baseline

Comparing with a lower baseline

- observed
- critical (Raven's-fit parameters)
- upper baseline (RefGame-fit parameters)
- --- lower baseline (avg. Raven's-fit params.)

Introduce an ACT-R model of RefGame as a problem of strategy exploration and learning

Successfully models learning effects, individual differences, and Raven's correlation

First step towards cognitively-realistic models of pragmatic performance

Also, not shown: Experimental evidence validating the roles of persistence, F_{NEG}

In support of algorithmic-level models

- Probabilistic models of pragmatic competence (e.g. Frank & Goodman's Rational Speech Act model) have been extremely influential, but they are not models of processing
- Processing models are needed to explain a host of more complex facts:
 - On-task learning behavior
 - Evidence for inferencespecific cognitive load

(De Neys & Schaeken 2007, Marty & Chemla 2013, van Tiel et al. 2017)

- Effects of general cognitive differences
- Heuristics/failures of probabilistic reasoning

(Mayn, Duff, Bila & Demberg 2024, cf. Fox et al. 2004)

Beyond the game setting

- Current model is specific to a highly controlled, novel game.
- Still, core may be plausible for ad-hoc inferences in natural comprehension:
 - Rational preference to avoid effort
 - Search for alternative meanings triggered by low informativity/relevance
 - Experience-based tuning of reasoning depth for a given interaction
- Indeed, Raven's scores also correlate with ad-hoc atypicality inferences.

(Ryzhova, Mayn & Demberg 2023)

We aim to extend our model in this direction.

ERC Grant #948878 to V. Demberg, "Individualized interactions in discourse"

Thanks also to Sebastian Schuster, Michael Frank, and Niels Taatgen for suggestions and feedback.

Ask us about:

- New experiments validating ID effects by measuring persistence and F_{NEG} directly
- Simulated and observed response time effects

- Related work observing probability fallacies in first-order reasoning
- Details of the model

New data: Independent persistence measures

Model $\beta_{\text{PERSIST}} = (0.83, 0.88)_{95\%}$ Human $\beta_{\text{PERSIST}} = (0.08, 0.58)_{95\%}$ (from brms logistic regr. with uninf. priors, ID predictors were z-scaled)

Measuring Persistence:

Impossible Anagrams

(Ventura & Shute 2013)

(see also Eisenberg & Leonard 1980; Dale et al. 2018)

rveir (easy)

kjoer

(hard)

ardot

(impossible)

Anagram Persistence:

SkipTime_{IMPOSS} / Correct RT_{EASY}

- Also correlated with:
 - Time spent on (task-final) impossible Raven's problem (Dale et al. 2018)
 - Grit score derived from self-assessment

R = 0.20

R = 0.18

(Duckworth & Quinn 2009)

New data: Independent F_{NEG} measures

Model $\beta_{\text{FNEG}} = (0.53, 0.58)_{95\%}$ Human $\beta_{\text{FNEG}} = (-0.05, 0.40)_{95\%}$ (from brms logistic regr. with uninf. priors, ID predictors were z-scaled)

Measuring Fneg:

The Probabilistic Stimulus Selection task

(Frank et al. 2004, 2005, 2007)

- Two pathways to learn from experiences where A is a better choice than B:
 - Learn positive value of A (via F_{POS})
 - Learn negative value of B (via F_{NEG})
 - Measure independently on test phase
- Corresponds to individual differences in dopamine levels in basal ganglia, and error-related negativity in ERPs.

New data: Learning

Model $\beta_{\text{FNEG}} = (0.05, 0.05)_{95\%}$ Human $\beta_{\text{FNEG}} = (0.01, 0.03)_{95\%}$ (from brms logistic regr. with uninf. priors, trial was centered and not scaled) (n = 150, 8 obs./cond. + 20 trivial)

New data: RTs

(n = 150, 8 obs./cond. + 20 trivial)

Probability fallacies in 1st-order reasoning

(Mayn, Duff, Bila & Demberg 2024)

- 1st-order pragmatic reasoning can solve "Simple" trials even with an actual literal (e.g. computer) speaker.
- Either 1st-order reasoning is never used, or participants apply it poorly.

(cf. Fox et al. 2004; Starns et al. 2019)

Atypicality inferences

(Ryzhova, Mayn & Demberg 2023)

Mary went to a restaurant. She ate there!

Mary must typically not eat when she goes to a restaurant.

- Participants with higher Raven's scores generated these inferences more often.
- Perhaps again, faster disengagement is supporting successful identification of a plausible candidate inference.