Compression vs. Partition: Memory domains and the processing of appositives

Lalitha Balachandran, John Duff, Pranav Anand, and Amanda Rysling

UC Santa Cruz Linguistics | AMLaP 28, 7 September 2022

Memory Domains & Linguistic Structure

Previous research suggests that some units of linguistic structure correspond to *memory domains*, units that influence storage and access during on-line processing [3, 6, 11].

How (if at all) is retrieval of linguistic content affected by segmentation of that content into memory domains?

A test case: Appositive relative clauses (ARCs).

- Sub-sentential units that are semantically, pragmatically, and prosodically demarcated from their host clauses [10].
- Argued to be less impactful on later processing than restrictive relative clauses (RRCs) [2, 3, 7, 9].

ARC: The cat, who loves to eat tuna in the morning, came running into the kitchen.

RRC: The cat that loves to eat tuna in the morning came running into the kitchen.

Two explanations: Appositives are stored in separate domains that are...

- less accessible in memory due to loss/compression of structure [3, 11], or
- easier to target directly and/or bypass during memory retrieval [8].

Two views of segmentation effects

- Prosodic and semantic/pragmatic segmentation sometimes reduces the accessibility of previous content, because crossing domain boundaries induces memory decay [3, 11].
- Prosodic segmentation enhances memory for utterances and their segments [6], because domains lessen the burden on working memory and reduce potential of interference [8].

Hypotheses & Predictions

Compression: Following processing of the RC, appositives are compressed in memory due to their semantic/pragmatic status [3].

- Predicts worse memory for ARCs compared to RRCs.
- Predicts difficulty accessing ARC-internal content, post-RC.

Partition: Appositives create a structural division in the memory representation of a sentence that makes all the sentence's content more easily accessible.

- Predicts better memory for ARCs compared to RRCs.
- Predicts easier access to all content in a sentence with an ARC.

Experiment 1: Recognition Memory (n = 48)

- Q: Are ARCs remembered worse or better than RRCs?
- A: Numerically better, but not significantly. Crucially, not worse.

 2×2 Recognition Memory paradigm crossing RC Type (ARC, RRC) and recognition probe Structure (Same, Different) across 48 items (+ 108 fillers of varied structure).

STRUCTURE levels manipulated the syntactic structure of the RC (Dative vs. Double Object).

ARC RRC The father, who cooked the kids The father that cooked the kids a a meal after the orchestra meal after the orchestra Same performance, was grateful for performance was grateful for instant noodles. instant noodles. The father, who cooked a meal The father that cooked a meal for for the kids after the orchestra the kids after the orchestra **Different** performance, was grateful for performance was grateful for instant noodles. instant noodles.

	d_a	AUC	2.5%	97.5%
ARC Same	0.84	0.67	0.64	0.7
RRC Same	0.64	0.63	0.6	0.66
	$D_{boot} = 1.76$		p = 0.08	

- **X Compression** hypothesis: Sensitivity to ARCs is not lower than sensitivity to RRCs.
- **? Partition** hypothesis: Numerically higher sensitivity to ARCs.

Experiment 2: Maze (n = 72)

- Q: Are ARCs less accessible than RRCs, or do they make content more accessible?
- A: Tentatively, more accessible ellipsis resolution is faster in sentences with ARCs.

 1×3 Maze task manipulating ellipsis site Position across 36 items (+ 164 fillers):

- Control: Both the ellipsis site and antecedent occupy RRCs.
- ARC-1: An ellipsis site in an RRC targets an ARC-internal antecedent.
- **ARC-2**: An ellipsis site within an ARC targets an RRC antecedent.
- **Control** The struggling author that published **two novels** resented the successful hack that published **forty** __ over the past three decades.
- ARC-1 The struggling author, who published **two novels**, resented the successful hack that published **forty** __ over the past three decades.
- ARC-2 The struggling author that published **two novels** resented the successful hack, who published **forty** _ over the past three decades.

The Maze Task [1, 5]

- 2AFC decisions between grammatical continuations vs. high-surprisal foils.
- Choosing a foil terminates the trial.
- Success requires representation of structural and conceptual context.
- Response latency (RT) assumed to index lexical access, integration, and decision making.

Mean Maze Latencies by Region

brms linear m/e model for ln(RT):

Critical (over)	\hat{eta}	95% Crl	
C vs. ARC-1	-0.01	(-0.05,0.02)	
C, ARC-1 vs. ARC-2	-0.03	(-0.08, 0.02)	
Spillover (the past)	\hat{eta}	95% Crl	
C vs. ARC-1	-0.01	(-0.02, 0.01)	
*C, ARC-1 vs. ARC-2		(-0.05, -0.0008)	

- ✓ **Partition**: Retrieval in ARC-2 is faster than in Control.
- **? Compression**: Numerically, retrieval in ARC-1 is faster than in the Control but also slower than in ARC-2.

Discussion

- We find evidence that segmentation facilitates memory retrieval: support for Partition.
- Are domains also compressed?
- The two hypotheses aren't mutually exclusive.
- Alternatively: an avoidance of ellipsis antecedents in ARCs?
- Some large linguistic constituents constitute domains in memory.
- These domains serve to restrict the search space for retrieval, and so can reduce potential sources of similarity-based interference.
- But what large linguistic constituents? Syntactic? Pragmatic? Prosodic? All of the above? (see [4])

Conclusions

- We do not find evidence in support of Compression:
- ARCs are not less accessible in memory than RRCs.
- We find tentative evidence in favor of Partition:
- ARCs (through segmentation) make utterance content *more* accessible in memory than RRCs.

References

- [1] Boyce, Veronica, Richard Futrell & Roger P. Levy. 2020. Journal of Memory and Language 111.
- [2] Dillon, Brian, Charles Clifton Jr & Lyn Frazier. 2014. Language, Cognition and Neuroscience 29(4). 483–498.
- [3] Dillon, Brian, Charles Clifton Jr, Shayne Sloggett & Lyn Frazier. 2017. *Journal of Memory and Language* 96. 93–109. [4] Duff, John, Pranav Anand, Adrian Brasoveanu & Amanda Rysling. 2022. Talk presented at Processing Meets Semantics, Utrecht.
- [5] Forster, Kenneth I., Christine Guerrera & Lisa Elliot. 2009. *Behavior Research Methods* 41(1). 163–171.
- [6] Jarvella, Robert J. 1979. In *Psychology of learning and motivation*, vol. 13, 379–421.
- [7] Kim, Sanghee & Ming Xiang. 2022. Talk presented at 35th Annual Conference on Human Sentence Processing (HSP).
- [8] Kroll, Margaret & Matt Wagers. 2019. Unpublished manuscript, UC Santa Cruz.
- [9] McInnerney, Andrew & Emily Atkinson. 2020. Talk presented at 33rd CUNY Conference on Human Sentence Processing.
- [10] Potts, Christopher. 2005. Oxford University Press.
- [11] Schafer, Amy J. 1997. UMass Amherst dissertation.